Jump to content
one...two...tree

How we’ll get ultra-efficient solar cells by copying plants’ ‘quantum biology’

 Share

1 post in this topic

Recommended Posts

Filed: Country: Philippines
Timeline

Some day solar cells will be as cheap as house paint, and the renewables vs. fossil fuel debate will seem as quaint as Whigs vs. Jacksonian Democrats. Getting there has inspired all kinds of crazy ideas, and the craziest, perhaps, is to do it exactly like plants do. Thing is, your average plant turns out to be exploiting tricks of physics that most scientists used to think were only possible inside a lab, under high vacuum, at the intersection of a bunch of laser beams cooling a handful of atoms to near absolute zero.

A new discipline called "quantum biology" holds that plants are exploiting a trick of quantum mechanics to convert sunlight into plant niblets at unexpectedly high efficiencies. The details are complicated, but it appears that electrons produced by a plant cell's chloroplasts attain a state of quantum "coherence," where the electrons' wave patterns are moving in lock-step. It's sort of like a crew team pulling in unison -- much more powerful than everyone just flailing their oars around chaotically.

Most of the time, particles at normal cellular temperatures are shaking so violently that anything about them that's the least bit quantumly coherent is instantly destroyed. But somehow plants, like the

, just don't give a ####. They use the vibrations of their atoms at room temperature to actually encourage coherence, which means electrons move to their destination even faster than normal.

These effects, in turn, suggest practical uses. Perhaps most obviously, says Scholes, a better understanding of how biological systems achieve quantum coherence in ambient conditions will "change the way we think about design of light-harvesting structures". This could allow scientists to build technology such as solar cells with improved energy-conversion efficiencies. Seth Lloyd considers this "a reasonable expectation", and is particularly hopeful that his discovery of the positive role of environmental noise will be useful for engineering photonic systems using materials such as quantum dots (nanoscale crystals) or highly branched polymers studded with light-absorbing chemical groups, which can serve as artificial antenna arrays.

No one would have thought solar panels could become more efficient by exploiting quantum effects without being massively expensive. Until they investigated the properties of a humble blade of grass.

straight to the source

Link to comment
Share on other sites

 

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
- Back to Top -

Important Disclaimer: Please read carefully the Visajourney.com Terms of Service. If you do not agree to the Terms of Service you should not access or view any page (including this page) on VisaJourney.com. Answers and comments provided on Visajourney.com Forums are general information, and are not intended to substitute for informed professional medical, psychiatric, psychological, tax, legal, investment, accounting, or other professional advice. Visajourney.com does not endorse, and expressly disclaims liability for any product, manufacturer, distributor, service or service provider mentioned or any opinion expressed in answers or comments. VisaJourney.com does not condone immigration fraud in any way, shape or manner. VisaJourney.com recommends that if any member or user knows directly of someone involved in fraudulent or illegal activity, that they report such activity directly to the Department of Homeland Security, Immigration and Customs Enforcement. You can contact ICE via email at Immigration.Reply@dhs.gov or you can telephone ICE at 1-866-347-2423. All reported threads/posts containing reference to immigration fraud or illegal activities will be removed from this board. If you feel that you have found inappropriate content, please let us know by contacting us here with a url link to that content. Thank you.
×
×
  • Create New...